BeeMapper: a web tool for grower assessment of wild bee habitat

Brianne Du Clos
PhD Candidate, Ecology and Environmental Sciences
University of Maine
BeeMapper basics

• Aim: to help growers assess wild bee habitat around their wild blueberry fields
• Target audience: Maine wild blueberry growers
• Features:
 • Maps
 • Land cover
 • Predicted wild bee abundance
 • Navigational aids
 • User’s guide
 • Links for further reading
InVEST Model Suite

Stakeholder Engagement

Scenarios

Biophysical Models

Economic Models

Maps
Tradeoff curves
Balance sheets

Dollar values
Maps
Tradeoff curves
Balance sheets

© 2007 Natural Capital Project
InVEST Crop Pollination Model

• Input:
 • Land cover data
InVEST Crop Pollination Model

• Input:
 • Land cover data
 • Suitability values

Table 3. Average (± standard deviation) scaled landcover suitability values assigned through expert opinion.

<table>
<thead>
<tr>
<th>Landcover</th>
<th>Ground nesting</th>
<th>Cavity nesting</th>
<th>Spring forage</th>
<th>Early Summer forage</th>
<th>Late Summer forage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deciduous/mixed forest, edge</td>
<td>0.9(0.17)</td>
<td>1.0(0.19)</td>
<td>0.9(0.24)</td>
<td>0.9(0.24)</td>
<td>1.0(0.22)</td>
</tr>
<tr>
<td>Developed/other</td>
<td>0.9(0.25)</td>
<td>0.6(0.30)</td>
<td>1.0(0.27)</td>
<td>0.9(0.26)</td>
<td>1.0(0.22)</td>
</tr>
<tr>
<td>Coniferous forest</td>
<td>0.5(0.23)</td>
<td>0.6(0.28)</td>
<td>0.1(0.24)</td>
<td>0.1(0.21)</td>
<td>0.1(0.29)</td>
</tr>
<tr>
<td>Deciduous forest/mixed forest</td>
<td>0.6(0.21)</td>
<td>0.9(0.22)</td>
<td>0.7(0.21)</td>
<td>0.5(0.29)</td>
<td>0.4(0.18)</td>
</tr>
<tr>
<td>Emergent wetlands/scrub-shrub</td>
<td>0.2(0.14)</td>
<td>0.4(0.24)</td>
<td>0.7(0.22)</td>
<td>0.6(0.25)</td>
<td>0.6(0.20)</td>
</tr>
<tr>
<td>Wetlands/water</td>
<td>0.1(0)</td>
<td>0.1(0.05)</td>
<td>0.3(0.20)</td>
<td>0.2(0.16)</td>
<td>0.5(0.18)</td>
</tr>
<tr>
<td>Agriculture/field</td>
<td>0.7(0.29)</td>
<td>0.2(0.18)</td>
<td>0.9(0.31)</td>
<td>0.7(0.27)</td>
<td>0.9(0.33)</td>
</tr>
<tr>
<td>Blueberries</td>
<td>1.0(0.25)</td>
<td>0.4(0.26)</td>
<td>0.4(0.29)</td>
<td>1.0(0.28)</td>
<td>0.5(0.26)</td>
</tr>
</tbody>
</table>

Chapin 2014
InVEST Crop Pollination Model

• Input:
 • Land cover data
 • Suitability values
 • Bee species life history
InVEST Crop Pollination Model

• Input:
 • Land cover data
 • Suitability values
 • Bee species life history

• Output: predicted wild bee abundance
Tool demonstration

• Technical support provided by the Faculty Development Center
• http://130.111.20.140/
Participatory process

• 1st iteration: Small group presentation
 • Wild Blueberry Commission Advisory Board, Nov. 2014
 • Feedback:
 • more navigational aids
 • simple information
 • shaded color abundance map

• 2nd iteration: Booth at a large meeting
 • Spring Growers Meeting, March 2015
What’s left to do:

• 3rd iteration: Six 1:1 sessions
 • Growers using a variety of management practices, March 2015

• 4th iteration: Large group presentation
 • Regional Spring field training sessions, April 2015

• Final presentation:
 • Wild Blueberry Field Day, July 2015
Future directions

• End results? Summarization for printing?
• Data development
 • Midcoast coverage
 • Inform InVEST with field data
• Scenario building
Acknowledgments

• Research Team:
 • Samuel Hanes
 • Cyndy Loftin
 • Frank Drummond
 • Aaron Hoshide

• Graduate students:
 • Shannon Chapin Groff
 • Kourtney Collum

• Technical support:
 • Andrei Strukov
 • Rob Powell
 • Nate Swan